
Lets Make A Retro Game
Episode 11 – Scoring

In this episode we are going look at adding scoring to our game.

Our Megablast game we are making is based on Astrosmash for the Intellivision and in that game

you can both increase your score by shooting various enemies plus loose score if any of the enemies

make it to the ground.

This is another reason it makes a good example game, as we get to cover both increasing and

decreasing a player’s score.

So to get started let’s look at how we are going to keep track of the players score.

To make displaying the score a bit easier we are going to use a special Z80 set of instructions that

assist with Binary Coded Decimal (BCD) values.

What is BCD you ask? It is special number storage mode that instead storing the values 0-255 in each

byte, it stores a single decimal digit (0-9) in each of the two nibbles (4-bits) in a byte i.e. you can

store from 0-99 per byte of memory.

This does seem to be a bit of a waste, but what this allows us to do is easily display a decimal

representation of the number with very little work (as we will go through below).

In our game we are going to use three bytes of Ram to hold the players current score, if you always

make the last digit of the score zero, this will allow us to have seven digits or scores from 10 to 99

million.

So to make our scoring work we are going to need five things:

 A routine to display the current score to the screen

 A routine to add to the players score

 A routine to subtract from the players score

 Call the display routine when we are allowed to draw to the screen

 Call the routines to add and subtract points to and from the players score at the appropriate

places in our game.

Displaying the Current Score
So first we need a routine to display our score on the screen, this is actually already in the supplied

code, but I made a couple of slight changes to make it more readable so we will go through it here

for completeness.

; Display the current score on the 2nd last row

DISPLAYSCORE:

; compare the 1st score digit with our lastscore value

 LD A,(SCORE)

 LD HL,LASTSCORE

 CP (HL)

 RET Z

This first part of the routine, checks that the 1st digit of our score has changed, by comparing it with

the value stored in LASTSCORE. This prevents us from wasting time displaying the score if our score

hasn’t changed.

; setup our write to video ram

 LD HL,VRAM_NAME + 707

 CALL SETWRT

Next we set the current video ram pointer to be at position 707 (or row 22, column 3).

; starting at our last byte, write out each of the

; two digits per byte

 LD HL,SCORE+2

 LD B,3

SLP:

; output the two decimal digits currently in A

CALL PRINTIT

 DEC HL

 DJNZ SLP

Here we loop through each of the three bytes for our score and for each one calling the PRINTIT

subroutine that will display the two digits stored in our score value.

Basically PRINTIT takes each nibble in the byte and adds it to our character for zero in our pattern

table and outputs that value to our screen name table.

; save the current score value into lastscore

 LD A,(SCORE)

 LD (LASTSCORE),A

RET

To finish up we get our current score value and store it in the LASTSCORE byte so that we don’t keep

on writing to the screen if our score has not changed.

Adding to the Current Score
Next we need to create a routine to add to the current score. We will call this routine with the

amount to add to the score in the Accumulator (A).

; Add A to the current score

; - Score is stored as three two nibble decimal values.

; - Displaying a fixed zero at the end this gives a

; score range of 7 digits i.e max score is 99 million.

SCOREADD:

 PUSH DE ; save DE

 PUSH HL ; save HL

First we save the current values of the DE and HL registers on the stack as they will be changed by

this routine, this way we only have to worry about A being changed when the routine is called.

 ; add value in A to the current 1st score byte

 LD HL,SCORE

The HL register is used to point to the byte of our Score that we are working on.

 LD E,A

 LD A,(HL)

 ADD A,E

 ; adjust into a two nibble decimal

 DAA

 ; save to 1st score byte

 LD (HL),A

In this section of our code, we put our value to add into E, then get the current value of our 1st score

byte, add E to it, then use the BCD command DAA, which will handle changing the value into BCD

format. The carry flag will be set if the number is larger than 99.

 ; now add any overflow to the 2nd score byte

 INC HL

 LD A,(HL)

 ADC A,0

 DAA

 LD (HL),A

In this section we add one to the next score byte if the carry flag was set from the 1st add.

 ; now add any overflow to the 3rd score byte

 INC HL

 LD A,(HL)

 ADC A,0

 DAA

 LD (HL),A

In this section we do the same for the 3rd score byte, I probably could have used a loop for this as

these two sections of code are identical. Shows how there are always multiple ways of doing things.

 POP HL ; restore HL

 POP DE ; restore DE

 RET

Lastly we restore our HL and DE values from the stack and return to our calling code.

Subtracting from the Current Score
Next we need to add a routine so we can subtract from the current Players score, this is a little bit

more complicated, but is a good example of subtraction with values larger than can be stored in a

single byte of memory.

; Subtract A from the current score

; - Score is stored as three two nibble decimal values.

; - Displaying a fixed zero at the end this gives a

; score range of 7 digits i.e max score is 99 million.

SCORESUB:

 PUSH DE ; save DE

 PUSH HL ; save HL

First we save the values in the DE and HL registers as we will be changing them.

 ; subtract value in A from the 1st score byte

 LD E,A

 LD HL,SCORE

 LD A,(HL)

 SUB E

 ; adjust into a two nibble decimal

 DAA

 ; save to 1st score byte

 LD (HL),A

Next we point HL to our 1st score byte of memory and then subtract the value passed in the

Accumulator (A) from it, use the DAA command to adjust it back into a BCD value and finally we

store the value back into our 1st score byte.

 ; now add any overflow to the 2nd score byte

 INC HL

 LD A,(HL)

 SBC A,0

 DAA

 LD (HL),A

Next if we overflowed i.e. made our 1st score byte less than zero, we need to subtract one from the

2nd score byte, adjust it back to a BCD value and store it back in the 2nd byte.

 ; now add any overflow to the 3rd score byte

 INC HL

 LD A,(HL)

 SBC A,0

 DAA

 LD (HL),A

Next we repeat the same code for the 3rd score byte. Once again a loop could have been used here.

 JR NC, SCORESUB2

 ; we have overflowed - set score to zero

 XOR A

 LD (HL),A

 DEC HL

 LD (HL),A

 DEC HL

 LD (HL),A

Now if we got an overflow on our 3rd byte then we have either made the score larger than 99 million

(unlikely as we subtracted a number) or we have made our score negative. We don’t want negative

scores, so we just reset all three score bytes back to zero.

SCORESUB2:

 POP HL ; restore HL

 POP DE ; restore DE

 RET

Finally we restore the HL and DE registers so they are not affected by what happens inside this

routine.

Calling the Display Routine
Another thing we need to do is call the Score Display routine when we are allowed to write to the

screen (and not cause graphical issues). So the best place for that is our VDP blank routine. The

sample code already includes this call as follows:

; This is our routine called every VDP interrupt during normal game play

; - Do all VDP writes here to avoid corruption

VDU_WRITES:

 CALL DISPLAYSCORE

 RET

Adding Scoring to our Game
Right so now we have all our routines ready, all we need to do is call our SCOREADD and SCORESUB

routines at some appropriate places in our code.

So 1st we will subtract from the score when an enemy reaches the bottom of the screen.

In the MOVE_ENEMIES routine find the comment:

 ; decrease score

And after that add the following two lines:

 LD A,1

 CALL SCORESUB

So this is going to decrease our effective score by 10 points every time one of the enemy objects

reaches the bottom of the screen.

Next we will increase the score when we shoot one of the enemies.

Further down in the MOVE_ENEMIES routine find the comment:

; later we will:

And replace it with the following code:

 ; increase our score for hitting the asteroid

 ; Note: later we will vary the score by type of enemy

 LD A,2 ; 20 points per asteroid hit

 CALL SCOREADD

 ; later we will:

 ; - explosion sound

 ; - animate enemy

So each time we shoot one of the enemies we will add 20 points to the players score. Later on we

will add on a different amount of points based on the type of enemy that has been destroyed.

That’s all for this episode, in the next episode we will handle the player getting killed and displaying

the number of remaining lives on screen.

